Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biochem Biophys Res Commun ; 606: 23-28, 2022 05 28.
Article in English | MEDLINE | ID: covidwho-1739556

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerging infectious disease currently spreading across the world. The spike (S) protein plays a key role in the receptor recognition and cell membrane fusion, making it an important target for developing vaccines, therapeutic antibodies and diagnosis. In this study, we constructed a baculovirus surface display system that efficiently presents both SARS-CoV and SARS-CoV-2 S proteins (including ectodomain, S1 subunit and receptor-binding-domain, RBD) on the surface of recombinant baculoviruses, utilizing transmembrane anchors from gp64 (signal peptide) and vesicular stomatitis virus (VSV). These recombinant baculoviruses were capable of transducing engineered HEK 293T cells overexpressing ACE2 receptors with significantly higher transduction efficiencies, indicating that S proteins displayed on baculovirus surface have antigenicity and can recognize and bind ACE2 receptors. Additionally, the transduction of SARS-CoV-2 S proteins can be inhibited by an antibody against the SARS-CoV-2 RBD. These results demonstrate that this baculovirus surface display system is a promising tool for developing antibodies, vaccines and recombinant protein production.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Angiotensin-Converting Enzyme 2/genetics , Baculoviridae/genetics , Baculoviridae/metabolism , Humans , Protein Binding , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
2.
MRS Commun ; 11(4): 425-431, 2021.
Article in English | MEDLINE | ID: covidwho-1686192

ABSTRACT

ABSTRACT: Toll-like receptor (TLR) can trigger an immune response against virus including SARS-CoV-2. TLR expression/distribution is varying in mesenchymal stromal cells (MSCs) depending on their culture environments. Here, to explore the effect of periodic thermomechanical cues on TLRs, thermally controlled shape-memory polymer sheets with programmable actuation capacity were created. The proportion of MSCs expressing SARS-CoV-2-associated TLRs was increased upon stimulation. The TLR4/7 colocalization was promoted and retained in the endoplasmic reticula. The TLR redistribution was driven by myosin-mediated F-actin assembly. These results highlight the potential of boosting the immunity for combating COVID-19 via thermomechanical preconditioning of MSCs. GRAPHIC ABSTRACT: Periodic thermal and synchronous mechanical stimuli provided by polymer sheet actuators selectively promoted the expression of SARS-CoV-2-associated TLRs 4 and 7 in adipose-derived MSCs and recruited TLR4 to Endoplasmic reticulum region where TLR7 was located via controlling myosin-mediated F-actin cytoskeleton assembly.

3.
ACS Chem Biol ; 16(3): 491-500, 2021 03 19.
Article in English | MEDLINE | ID: covidwho-1084488

ABSTRACT

The outbreak of novel coronavirus SARS-CoV-2 has caused a worldwide threat to public health. COVID-19 patients with SARS-CoV-2 infection can develop clinical symptoms that are often confused with the infections of other respiratory pathogens. Sensitive and specific detection of SARS-CoV-2 with the ability to discriminate from other viruses is urgently needed for COVID-19 diagnosis. Herein, we streamlined a highly efficient CRISPR-Cas12a-based nucleic acid detection platform, termed Cas12a-linked beam unlocking reaction (CALIBURN). We show that CALIBURN could detect SARS-CoV-2 and other coronaviruses and influenza viruses with little cross-reactivity. Importantly, CALIBURN allowed accurate diagnosis of clinical samples with extremely low viral loads, which is a major obstacle for the clinical applications of existing CRISPR diagnostic platforms. When tested on the specimens from SARS-CoV-2-positive and negative donors, CALIBURN exhibited 73.0% positive and 19.0% presumptive positive rates and 100% specificity. Moreover, unlike existing CRISPR detection methods that were mainly restricted to respiratory specimens, CALIBURN displayed consistent performance across both respiratory and nonrespiratory specimens, suggesting its broad specimen compatibility. Finally, using a mouse model of SARS-CoV-2 infection, we demonstrated that CALIBURN allowed detection of coexisting pathogens without cross-reactivity from a single tissue specimen. Our results suggest that CALIBURN can serve as a versatile platform for the diagnosis of COVID-19 and other respiratory infectious diseases.


Subject(s)
Bacterial Proteins/genetics , COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , Endodeoxyribonucleases/genetics , RNA, Viral/analysis , SARS-CoV-2/chemistry , Adenoviridae/chemistry , Animals , COVID-19/genetics , Fluorescent Dyes/chemistry , Humans , Limit of Detection , Mice, Inbred BALB C , Nucleic Acid Amplification Techniques , RNA Probes/genetics , RNA, Viral/genetics , Specimen Handling , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL